
NumPy var: How to calculate variance in Python
You can calculate the variance of a NumPy array, list, and tuple in Python.
import numpy
a1 = numpy.array([1, 2, 3])
a2 = [1, 2, 3]
a3 = (1, 2, 3)
s1 = numpy.var(a1)
s2 = numpy.var(a2)
s3 = numpy.var(a3)
print(s1) # 0.6666666666666666
print(s2) # 0.6666666666666666
print(s3) # 0.6666666666666666
Axis
If the argument is a multi-dimension array like a matrix or tensor, you can use axis
argument.
import numpy
a = numpy.array([[1, 2, 3], [4, -7, 10]])
v = numpy.var(a, axis=1)
print(v) # [ 0.66666667 49.55555556]
print(type(v)) # <class 'numpy.ndarray'>
axis=1
means numpy.var computes [1, 2, 3]
and [4, -7, 10]
so returns numpy.ndarray. The first 0.66666667 is the variance of [1, 2, 3]
and the second 49.55555556 is the variance of [4, -7, 10]
.
The following is in tha case the axis is 0.
import numpy
a = numpy.array([[1, 2, 3], [4, -7, 10]])
v = numpy.var(a, axis=0)
print(v) # [ 2.25 20.25 12.25]
print(type(v)) # <class 'numpy.ndarray'>
- (1, 4) -> 2.25
- (2, -7) -> 20.25
- (3, 10) -> 12.25
Comments
Powered by Markdown